Ijraset Journal For Research in Applied Science and Engineering Technology
Authors: Aditya Kushwaha , Sushant Jhingran
DOI Link: https://doi.org/10.22214/ijraset.2025.68142
Certificate: View Certificate
In order to deal with the electrical crisis in an efficient manner, it is imperative to promote the use of renewable energy sources, with a specific emphasis on solar energy. Nevertheless, the challenge lies in the variable patterns of solar irradiance, which are influenced by seasonal weather variations, making it a complex factor to predict. The primary aim of this study is to predict the solar radiation on inclined surfaces, while considering the impact of meteorological variables like temperature, wind speed, humidity, and air pressure. The research used the Artificial Neural Network (ANN) methodology to examine the Douala metropolitan area. Consequently, the model may be used to estimate solar irradiance not only inside the specified study area but also across locations with similar climatic conditions, by using different combinations of input data. The model exhibited its proficiency in appropriately evaluating sun ray intensities by generating a noteworthy outcome via its application using (50 concealed-layer neural network networks along the logistic Sigmoid function. Keywords: solar radiation, neural networks, feed-forward neuron networks, and multilayer perceptron’s.
The advancement of artificial intelligence (AI), particularly Artificial Neural Networks (ANNs) and Recurrent Neural Networks (RNNs), has significantly impacted renewable energy, especially solar power forecasting. Accurate solar radiation prediction is crucial for optimizing green energy systems, smart grids, and sustainable urban planning. ANNs and RNNs effectively analyze time-series solar data, enhancing the integration of solar energy into power grids and promoting environmental sustainability.
This study compares various ANN methodologies, focusing on RNNs, to assess their accuracy and adaptability in solar radiation forecasting. The research highlights the importance of solar irradiance forecasting for sustainable development, especially in energy-deficient regions like Central Africa, where solar energy is a promising solution.
The literature review emphasizes RNNs’ strength in short-term temporal predictions and ANNs’ flexibility in modeling nonlinear relationships. Both models are valuable, with their use depending on project requirements like data availability and forecasting needs.
The study introduces a novel ANN model incorporating urban parameters (e.g., building height, location) to improve solar radiation predictions for urban planning. Methodologically, it uses satellite and survey data, applying statistical and machine learning models (ARMA, SVM, deep learning) to forecast solar irradiance.
Comparative analysis shows ANN achieving higher accuracy (91.4%) than RNN (89.9%), underlining their complementary strengths in solar radiation forecasting. Overall, the research advances sustainable energy strategies by enhancing solar energy forecasting accuracy, contributing to ecological stewardship, smart grid reliability, and sustainable urban development.
This research introduces efficient artificial neural network (ANN) and recurrent neural network (RNN) methods for predicting solar radiation. These findings have implications for improving solar energy systems and promoting sustainable community development. Subsequent investigations might delve into supplementary environmental factors, hybrid deep neural network (DNN) models, and intelligent solar energy system configurations aimed at fostering sustainable communities
[1] Panda, S. et al. Residential demand side management model, optimization and future perspective: A review. Energy Rep. 8, 3727–3766. ISSN 2352-4847 https:// doi. org/ 10. 1016/j. egyr. 2022. 02. 300 (2022). [2] Meena, C. S. et al. \"Innovation in green construction industry for sustainable future. Energies 15(18), 6631. https:// doi. org/ 10. 3390/ en151 86631 (2022). [3] Yang, C., Wu, Z., Li, X. & Fars, A. Risk- constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric cars. Energy 288, 129680. https:// doi. org/ 10. 1016/j. energy. 2023. 129680 (2024). [4] Liu, Y., Liu, X., Li, X., Yuan, H. & Xue, Y. Model predictive control-based dual-mode functioning of an energy-stored quasi-Z-source photovoltaic power system. IEEE Trans. Ind. Electron. 70(9), 9169–9180. https:// doi. org/ 10. 1109/ TIE. 2022. 32154 51 (2023). [5] Hu, F. et al. Research on the development of China’s photovoltaic technology innovation network from the standpoint of patents. Energy Strategy Rev. 51, 101309. https:// doi. org/ 10. 1016/j. esr. 2024. 101309 (2024). [6] Shirkhani, M. et al. A review of microgrid decentralized energy/voltage control architectures and methodologies. Energy Rep. 10, 368–380. https:// doi. org/ 10. 1016/j. egyr. 2023. 06. 022 (2023). [7] Yao, L., Wang, Y. & Xiao, X. Concentrated solar power plant modeling for power system research. IEEE Trans. Power Syst. https:// doi. org/ 10. 1109/ TPWRS. 2023. 33019 96 (2023). [8] Duan, Y., Zhao, Y. & Hu, J. An initialization-free distributed method for dynamic economic dispatch issues in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 34, 101004. https:// doi. org/ 10. 1016/j. segan. 2023. 101004 (2023). [9] Panda, S. et al. A thorough assessment of demand side management and market design for renewable energy support and inte- gration. Energy Rep. 10, 2228–2250 ISSN 23524847 https:// doi. org/ 10. 1016/j. egyr. 2023. 09.049 (2023). [10] Gupta, S. et al. Estimation of solar radiation with account of terrestrial losses at a specified location—A review. Sustainability 15, 9962 https:// doi. org/ 10. 3390/ su151 39962; https:// doi. org/ 10. 1049/ cth2. 12504 (2023). [11] Khelifi, R. et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM method. Int. Trans. Electr. Energy Syst. 2023(6413716), 14. https:// doi. org/ 10. 1155/ 2023/ 64137 16 (2023). [12] Ssekulima, E. B., Anwar, M. B., AlHinai, A. &ElMoursi, M. S. “Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renew. Power Gener. 10(7), 885–989. https:// doi. org/ 10. 1049/ iet- rpg. 2015. 0477 (2016). [13] Sharma, H. et al. Feasibility of solar grid-based industrial virtual power plant for efficient energy scheduling: A case of Indian Power Sector. Energies 15(3), 752. https:// doi. org/ 10. 3390/ en150 30752 (2022). [14] Chandra, S. et al. Influence of artificial and natural cooling on performance characteristics of a solar P.V. system: A case study. IEEE Access 9, 29449–29457. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30587 79 (2021). Figure 21. Measured and predicted solar irradiance considering temperature, wind speed, air pressure, and relative humidity. 22 Vol. (1234567890) Reports from Science In 2024, at 14:3572 There is a 10.1038/s41598-024-54181-y available. www.scientificreports.nature.com [15] Song, X., Wang, H., Ma, X., Yuan, X. & Wu, X. Robust model predictive current control for a nine- phase open-end winding PMSM with great computational efficiency. IEEE Trans. Power Electron. 38(11), 13933–13943. https:// doi. org/ 10. 1109/ TPEL. 2023. 33093 08 (2023). [16] Zhang, X. et al. Voltage and frequency stabilization control approach of virtual synchronous generator based on tiny signal model. Energy Rep. 9, 583–590. https:// doi. org/ 10. 1016/j. egyr. 2023. 03. 071 (2023). [17] Li, S., Zhao, X., Liang, W., Hossain, M. T. & Zhang, Z. A rapid and accurate calculation technique of line breaking power flow based on Taylor expansion. Front. Energy Res. https:// doi. org/ 10. 3389/ fenrg. 2022. 943946 (2022). [18] Mellit, A., Eleuch, H., Benghanem, M., Elaoun, C. & Pavan, A. M. An adaptive model for prediction of global, direct and diffuse hourly solar irradiance. Energy Convers. Manag. 51(4), 771–782. https:// doi. org/ 10. 1016/j. encon man. 2009. 10. 034 (2010). [19] Li, S. et al. Differential low-temperature AC breakdown between synthetic ester and mineral oils: Insights from both molecular dynamics and quantum mechanics. IEEE Trans. Dielectr. Electr. Insulat. https:// doi. org/ 10. 1109/ TDEI. 2023. 33452 99 (2023). [20] Li, X. et al. Dimensional diversity (0D, 1D, 2D, 3D) in Perovskite solar cells: Exploring the possibilities of mix-dimensional integra- tions. J. Mater. Chem. A https:// doi. org/ 10. 1039/ D3TA0 6953B (2024). [21] Mazumdar, B. M., Saquib, M. & Das, A. K. An empirical model for ramp analysis of utility-scale solar PV power. Solar Energy 107, 44–49. https:// doi. org/ 10. 1016/j. solen er. 2014.05. 027 (2014). [22] Bajaj, M. & Singh, A. K. Grid integrated renewable DG systems: A study of power quality problems and state-of-the-art mitiga- tion methods. Int. J. Energy Res. 44, 26–69. https:// doi. org/ 10. 1002/ er. 4847 (2020). [23] Hussen, S., Ayalew, F., Bajaj, M., Sharma, N.K., Jurado, F. & Kamel, K. An review of current achievements in energy storage for solar power systems. In IEEE International Conference on Automatica—Congreso de la Asociación Chilena de Control Automático, Curicó Chile, October 24–28 (2022). [24] Dashtdar, M., Bajaj, M. & Hosseinimoghadam, S. M. S. Design of optimum energy management system in a residential microgrid based on smart control. Smart Sci. https:// doi. org/ 10. 1080/ 23080 477. 2021. 19498 82 (2021). [25] Lin, X. et al. Stability investigation of three- phase grid-connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 142, 108244. https:// doi. org/ 10. 1016/j. ijepes. 2022. 108244 (2022). [26] Song, J., Mingotti, A., Zhang, J., Peretto, L., & Wen, H. Accurate damping factor and frequency estimate for damped real-valued sinusoidal signals. IEEE Trans. Instrum. Meas. https:// doi. org/ 10. 1109/ TIM. 2022. 32203 00 (2022). [27] Alzahrani, A., Shamsi, P., Dagli, C. & Ferdowsi, M. Solar irradiance forecasting using deep neural networks. Proc. Comput. Sci. 114, 304–313. https:// doi. org/ 10. 1016/j. procs. 2017. 09. 045 (2017). [28] Mohanty, S. et al. Demand side management of electric cars in smart grids: A study on solutions, difficulties, models, and Optimising. Energy Rep. 8, 12466–12490. ISSN 2352–4847 https:// doi. org/ 10. 1016/j. egyr. 2022. 09. 023 (2022). [29] Gao, Y., Doppelbauer, M., Ou, J. & Qu, R. Design of a double-side flux modulation permanent magnet machine for servo applica- tion. IEEE J. Emerg. Sel. Top. Power Electron. 10(2), 1671–1682. https:// doi. org/ 10. 1109/ JESTPE. 2021. 31055 57 (2021). [30] Zhang, X., Wang, Z. & Lu, Z. Multi-objective load dispatch for microgrid with electric cars using modified gravitational search and particle swarm optimization technique. Appl. Energy 306, 118018. https:// doi. org/ 10. 1016/j. apene rgy. 2021. 118018 (2022). [31] Shao, B. et al. Power coupling analysis and better decoupling management for the VSC coupled to a weak AC grid. Int. J. Electr. [32] Power Energy Syst. 145, 108645. https:// doi. org/ 10. 1016/j. ijepes. 2022. 108645 (2023). [33] Shen, Y., Xie, J., He, T., Yao, L. & Xiao, Y. CEEMD-fuzzy control energy management of hybrid energy storage systems in electric automobiles. IEEE Trans. Energy Convers. https:// doi. org/ 10. 1109/ TEC. 2023. 33068 04 (2023). [34] Alfaris, F., Alzahrani, A. & Kimball, J. W. Stochastic model for PV sensor array data. In 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA. 798–803 https:// doi. org/ 10. 1109/ ICRERA. 2014. 70164 95 (IEEE, 2014). [35] Yang, Y., Zhang, Z., Zhou, Y., Wang, C. & Zhu, H. Design of a simultaneous information and power transmission system based on a modulating characteristic of magnetron. IEEE Trans. Microwave Theory Tech. 71(2), 907–915. https:// doi. org/ 10. 1109/ TMTT. 2022. 32056 12 (2023). [36] Wang, Y., Xia, F., Wang, Y. & Xiao, X. Harmonic transfer function based single-input single-output impedance modeling of [37] LCCHVDC systems. J. Mod. Power Syst. Clean Energy https:// doi. org/ 10. 35833/ MPCE. 2023.000093 (2023). [38] Anil Kumar, B. et al. A new framework for boosting the power quality of electrical vehicle battery charging based on a modified Ferdowsi converter. Energy Rep. 10, 2394–2416.ISSN 2352–4847 https:// doi. org/ 10. 1016/j. egyr. 2023. 09. 070 (2023). [39] Rekioua, D. et al. Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries. Sci. Rep. 13, 21830. https:// doi. org/ 10. 1038/ s41598- 023- 49067-4 (2023). [40] Fu, C., Yuan, H., Xu, H., Zhang, H. & Shen, L. TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimate. J. Vis. Commun. Image Represent. 90, 103731. https:// doi. org/ 10. 1016/j. jvcir. 2022. 103731 (2023). [41] Chen, Y., Zhu, L., Hu, Z., Chen, S. & Zheng, X. Risk propagation in multilayer heterogeneous network of linked system of large engineering project. J. Manag. Eng. 38(3), 4022003. https:// doi. org/ 10. 1061/ (ASCE) ME. 1943- 5479. 00010 22 (2022). [42] Shboul, B. et al. A novel ANN model for hourly solar radiation and wind speed prediction: A case study across the north & south of the Arabian Peninsula. Sustain. Energy Technol. Assess. 46, 101248. https:// doi. org/ 10. 1016/j. seta. 2021. 101248 (2021). [43] Dolara, A., Leva, S. & Manzolini, G. Comparison of alternative physical models for PV power output prediction. Solar Energy 119, 83–99. https:// doi. org/ 10. 1016/j. solen er. 2015. 06. 017 (2015). [44] De Soto, W., Klein, S. A. & Beckman, W. A. Improvement and validation of a model for photovoltaic array performance. Solar Energy 80(1), 78–88. https:// doi. org/ 10. 1016/j. solen er. 2005. 06. 010 (2006). [45] Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. K. A distributed economic dispatch approach for power-water networks. IEEE Trans. Control Netw. Syst. 9(1), 356–366. https:// doi. org/ 10. 1109/ TCNS. 2021. 31041 03 (2022). [46] Hou, X. et al. A self-powered biomimetic mouse whisker sensor (BMWS) targeting at terrestrial and space objects perception. Nano Energy 118, 109034. https:// doi. org/ 10. 1016/j. nanoen. 2023. 109034 (2023). [47] Luo, J., Zhuo, W., & Xu, B. A deep neural network-based assistive decision technique for financial risk prediction in carbon trading market. J. Circuits Syst. Comput. https:// doi. org/ 10. 1142/ S0218 12662 45015 36 (2023). [48] Hassan, J. ARIMA and regression models for prediction of daily and monthly clearness index. Renew. Energy 68, 421–427. https:// doi. org/ 10. 1016/j. renene. 2014. 02. 016 (2014). [49] Phinikarides, A. et al. ARIMA simulation of the performance of several solar technologies. In 2013 IEEE 39th solar Specialists Conference (PVSC), Tampa, FL, USA. 0797–0801 https:// doi. org/ 10. 1109/ PVSC. 2013. 67442 68 (IEEE, 2013). [50] David, M., Ramahatana, F., Trombe, P. J. & Lauret, P. Probabilistic forecasting of the solar irradiance using recursive ARMA and GARCH models. Solar Energy 133, 55–72. https:// doi. org/ 10. 1016/j. solen er. 2016. 03. 064 (2016). [51] Gana, N. N. & Akpootu, D. O. Angstrom Type Empirical Correlation for Estimating Global Solar Radiation in North-Eastern Nigeria. [52] Veldhuis, A. J. et al. An empirical model for rack-mounted PV module temperatures forSoutheast Asian regions tested for minute time scales. IEEE J. Photovolt. 5(3), 774– 782. https:// doi. org/ 10. 1109/ JPHOT OV. 2015.24057 62 (2015). [53] Alzahrani, A., Shamsi, P., Ferdowsi, M. & Dagli, C. H. Chaotic behavior in high-gain interleaved dc–dc converters. Proc. Comput. Sci. 114, 408–416. https:// doi. org/ 10. 1016/j.procs. 2017. 09. 002 (2017). [54] Alzahrani, A., Shamsi, P. & Ferdowsi, M. Analysis and design of bipolar Dickson DC–DC converter. In 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA. 1–6 https:// doi. org/ 10. 1109/ PECI. 2017. 79357 33 (IEEE, 2017). 23 Vol.: (0123456789) Reports from Science In 2024, at 14:3572There is a 10.1038/s41598-024-54181-y available. www.scientificreports.nature.com [55] Alzahrani, A., Shamsi, P. & Ferdowsi, M. A new interleaved non-isolated high-gain DC–DC boost converter using Greinacher voltage multiplier cells. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA. 222–227 https:// doi. org/ 10. 1109/ ICRERA. 2017. 81912 70 (IEEE, 2017). [56] LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521(7553), 436–444. https:// doi. org/ 10. 1038/ natur e14539 (2015). [57] Zhang, L. et al. Research on the orderly charging and discharging method of electric cars considering journey characteristics and carbon quota. IEEE Trans. Transport. Electrif. https:// doi. org/ 10. 1109/ TTE. 2023. 32969 64 (2023). [58] Zhang, L., Sun, C., Cai, G., & Koh, L. H. Charging and discharging optimization technique for electric cars considering elasticity demand response. eTransportation 18, 100262 https:// doi. org/ 10. 1016/j. etran. 2023. 100262 (2023). [59] Mo, J. & Yang, H. Sampled value attack detection for busbar differential protection based on a negative selection immune system. J. Mod. Power Syst. Clean Energy 11(2), 421–433. https:// doi. org/ 10. 35833/ MPCE. 2021. 000318 (2023). [60] Yang, M., Wang, Y., Xiao, X. & Li, Y. A robust damping control for virtual synchronous generators based on energy reshaping. IEEE Trans. Energy Convers. 38(3), 2146–2159. https:// doi. org/ 10. 1109/ TEC. 2023. 32602 44 (2023). [61] Yan, Z. et al. Mechanism and technology assessment of a new alternating-arc-based directed energy deposition technique via polarity-switching self-adaptive shunt. Addit. Manuf. 67, 103504. https:// doi. org/ 10. 1016/j. addma. 2023. 103504 (2023). [62] Wang, Z., Li, J., Hu, C., Li, X. & Zhu, Y. Hybrid energy storage system and management method for motor drive with high torque overload. J. Energy Storage 75, 109432. https:// doi. org/ 10. 1016/j. est. 2023. 109432 (2024). [63] Koumi Ngoh, S., Ayina, O., Monkam, L. &Kemajou, A. Estimation of the Global Solar Radiation Under Sudan-Type Tropical Climate Using Artificial Neural Network Model. 22–33 (2013). [64] Voyant, C., Haurant, P., Muselli, M., Paoli, C. & Nivet, M.-L. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data. Solar Energy 102, 131–142. https:// doi. org/ 10. 1016/j. solen er. 2014. 01. 017 (2014). [65] Kalogirou, S. A. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 5(4), 373–401. https:// doi. org/ 10. 1016/ S1364- 0321(01) 00006-5 (2001). [66] Kalogirou, S. & Senc, A. Artificial intelligence approaches in solar energy applications. In Solar Collectors and Panels, Theory and Applications (Manyala, R. ed.) https:// doi. org/ 10. 5772/ 10343 (Sciyo, 2010). [67] Benghanem, M. Artificial intelligence algorithms for prediction of solar radiation data: A review. IJRET 3(2), 189. https:// doi. org/ 10. 1504/ IJRET. 2012. 045626 (2012). [68] Hontoria, L., Aguilera, J. & Zufiria, P. Generation of hourly irradiation synthetic series using the neural network multilayer per- ceptron. Solar Energy 72(5), 441–446. https:// doi. org/ 10. 1016/ S0038- 092X(02) 00010-5 (2002). [69] Hontoria, L., Aguilera, J., Riesco, J. & Zufiria, P. Recurrent Neural Supervised Models for Generating Solar Radiation Synthetic Series. [70] Voyant, C., Muselli, M., Paoli, C. & Nivet, M.- L. Optimization of an artificial neural network specialised to the multivariate forecast- ing of daily global radiation. Energy 36(1), 348– 359. https:// doi. org/ 10. 1016/j. energy. 2010. 10. 032 (2011). [71] Mellit, A. & Pavan, A. M. A 24-h forecast of sun irradiance using artificial neural network: Application for performance prediction of a grid-connected PV facility in Trieste, Italy. Solar Energy 84(5), 807–821. https:// doi. org/ 10. 1016/j. solen er. 2010. 02. 006 (2010). [72] Premalatha, N. & Valan Arasu, A. Prediction of solar radiation for solar systems by utilising ANN models with varying back propa- gation algorithms. J. Appl. Res. Technol. 14(3), 206–214 https:// doi. org/ 10. 1016/j. jart. 2016. 05. 001 (2016). [73] Mohamed, Z. E. Using the artificial neural networks for prediction and verifying solar radiation. J. Egypt. Math. Soc. 27(1), 47. https:// doi. org/ 10. 1186/ s42787- 019- 0043-8 (2019). [74] Bouchouicha, K., Hassan, M. A., Bailek, N. & Aoun, N. Estimating the worldwide solar irradiation and optimizing the error estimates in Algerian desert climate. Renew. Energy 139, 844–858. https:// doi. org/ 10. 1016/j. renene. 2019. 02. 071 (2019). [75] Notton, G., Paoli, C., Ivanova, L., Vasileva, S. & Nivet, M. L. Neural network technique to estimate 10-min solar global irradiation values on slanted planes. Renew. Energy 50, 576– 584. https:// doi. org/ 10. 1016/j. renene. 2012. 07. 035 (2013). [76] Akkaya, B. Comparison of multi-class classification algorithms on early detection of cardiac disorders. In y-BIS 2019 Conference: Recent Advances in Data Science and Business Analytics (2019). https:// www.acade mia. edu/ 41940 316/ Compa rison_ of_ Multi_ class_ Class ifica tion_ Algor ithms_ on_ Early_ Diagn osis_ of_ Heart_ Disea ses. Accessed 7 June 2023. [77] Dalar, A. Z., Kocadagli, A. Y. & Kose, A. M. Ozan Kocadagli Ali Erkoc Bilge Baser Nihan Acar Denizli Tahir Ekin LOC of y-BIS (2019). [78] Capizzi, G., Napoli, C. & Bonanno, F. Innovative second-generation wavelets production using recurrent neural networks for sun radiation forecasting. IEEE Trans. Neural Netw. Learn. Syst. 23(11), 1805–1815. https:// doi. org/ 10. 1109/ TNNLS. 2012. 22165 46 (2012). [79] Faceira, J., Afonso, P. & Salgado, P. Prediction of solar radiation using artificial neural networks. In CONTROLO’2014—Proceed- ings of the 11th Portuguese Conference on Automatic Control (Moreira, A. P., Matos, A. & Veiga, G. eds.) Lecture Notes in Electrical Engineering. Vol. 321. 397–406 https:// doi. org/ 10. 1007/ 978-3- 319- 10380-8_ 38 (Springer, 2015). [80] Mellit, A., Benghanem, M., Arab, A. H. & Guessoum, A. A simple model for producingsequences of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices method. Solar Energy 79(5), 469–482. https:// doi. org/ 10. 1016/j. solen er. 2004. 12. 006 (2005). [81] Cao, J. C. & Cao, S. H. Study on predicting sun irradiance using neural networks with preprocessing sample data using wavelet analysis. Energy 31(15), 3435–3445. https:// doi. org/ 10. 1016/j. energy. 2006. 04. 001 (2006). [82] Khorasanizadeh, H. & Mohammadi, K. Prediction of daily global solar radiation by day of the year in four cities situated in the sunny parts of Iran. Energy Convers. Manag. 76, 385–392. https:// doi. org/ 10. 1016/j. encon man. 2013. 07. 073 (2013). [83] Hassan, G., Youssef, E., Ali, M., Mohamed, Z. & Hanafy, A. Evaluation of alternative sunshine- based models for forecasting worldwide sun radiation—Case study: New Borg El-Arab city, Egypt. Therm. Sci. 22(2), 979–992. https:// doi. org/ 10. 2298/ TSCI1 60803 085H (2018).
Copyright © 2025 Aditya Kushwaha , Sushant Jhingran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Paper Id : IJRASET68142
Publish Date : 2025-03-31
ISSN : 2321-9653
Publisher Name : IJRASET
DOI Link : Click Here